

LAND DEVELOPMENT | ENGINEERING DESIGN | CONSTRUCTION SERVICES

Geotechnical Engineering Report Replacement of Bridge 023008 – West Road over Cherry Brook Canton, Connecticut

September 17, 2021 (Revised from March 16, 2021)

Freeman Project No.: 2020-0401

Prepared for:

WSP USA Inc. 500 Winding Brook Drive Glastonbury, Connecticut 06033

Prepared by:

Freeman Companies, LLC 36 John Street Hartford, CT 06106

Christopher J. Tonzi, P.E. Senior Geotechnical Engineer

TABLE OF CONTENTS

1.0	INTRODUCTION2
1.1	Summary2
1.2	Scope of Work
1.3	Authorization2
1.4	Project Vertical Datum
2.0	SITE AND PROJECT DESCRIPTION
2.1	Site Description2
2.2	Project Description
3.0	EXPLORATIONS
3.1	Subsurface Explorations
3.2	Laboratory Testing
4.0	SUBSURFACE CONDITIONS
4.1	Subsurface Conditions
5.0	GEOTECHNICAL ENGINEERING RECOMMENDATIONS4
5.1	General4
5.2	Spread Footing Design Criteria5
5.3	Micropile Design
6.0	CONSTRUCTION CONSIDERATIONS
6.1	Excavation
6.2	Bearing Surface Preparation
6.3	Cofferdam and Dewatering
6.4	Micropile Installation
6.5	Temporary Earth Retaining Systems
6.6	Preconstruction Survey and Monitoring
6.6	Reuse of Existing Soils7
7.0	FUTURE SERVICES AND LIMITATIONS
7.1	Future Services
7.2	Limitations7

ATTACHMENTS

Table

1. Subsurface Data

Figures

- 1. Site Location Map
- 2. Subsurface Exploration Location Plan
- 3. Subsurface Profile
- 4. Lateral Earth Pressures At-Rest Earth Pressures
- 5. Lateral Earth Pressures Active Earth Pressures

Appendices

- A. Test Boring Logs
- B. Results of Laboratory Testing

1.0 INTRODUCTION

1.1 Summary

This report presents our evaluation of the subsurface conditions and geotechnical engineering recommendations for replacement of Bridge 023008, West Road over Cherry Brook, located in Canton, Connecticut. This evaluation is based on recent subsurface explorations and laboratory test data.

Subsurface conditions generally consist of fill overlying sand overlying bedrock. We recommend that the proposed abutments and wingwalls be supported on spread footing foundations bearing directly on the decomposed bedrock.

However, if anticipated construction costs are too high for dewatering and support-of-excavation that will be required to place bottoms of footings below scour depths, then micropiles should be considered.

1.2 Scope of Work

Freeman Companies, LLC performed the following tasks:

- Coordinated drilling of test borings at the site;
- Provided technical monitoring of the test borings, described soil and rock materials encountered, and prepared test boring logs;
- Arranged for a testing laboratory to conduct laboratory soil and rock tests; and
- Evaluated the subsurface conditions and prepared this report containing geotechnical design recommendations and construction considerations.

1.3 Authorization

The work was completed in accordance with our Professional Services Subcontract dated October 14, 2020.

1.4 Project Vertical Datum

Elevations in this report were taken from the topographic plan provided to Freeman Cos. and are referenced to NAVD-88.

2.0 SITE AND PROJECT DESCRIPTION

2.1 Site Description

Bridge 023008 carrying West Road over Cherry Brook is located approximately ½ mile north of its intersection with Meadow Road in Canton, Connecticut, as shown on Figure 1, Site Location Map. It is a 17-foot long single steel arch bridge with an 18-foot wide roadway, originally constructed in 1965.

The existing bridge is shown in plan and profile on Figures 2 and 3, Subsurface Exploration Location Plan and Subsurface Profile.

2.2 Project Description

The proposed bridge will be a 22-foot long simple span structure with a 22-foot wide roadway on top. We understand that shallow spread footings, bearing on naturally-deposited materials and placed below scour depth is the preferred foundation type.

3.0 EXPLORATIONS

3.1 Subsurface Explorations

Three test borings (designated S-1, S-2 and S-2A) were completed by New England Boring Contractors, Inc., of Glastonbury, Connecticut on December 7, 2020. During the advancement of test boring S-2, the lead section of casing broke, so the borehole was abandoned and relocated 2 ft west as boring S-2A. Test borings were drilled by advancing hollow stem augers to depths of about 10 feet, then telescoping 4-inch diameter flush-joint casing to depths of about 15 feet. The boreholes were then advanced open hole (into weathered bedrock) using a roller bit to depths of 20 to 30 feet.

Standard Penetration Tests were conducted and soil samples were recovered at maximum 5-foot intervals. Borings were terminated within bedrock following retrieval of bedrock cores using an NX-size core barrel. Taped exploration locations are shown on Figure 2, Subsurface Exploration Location Plan. A Freeman Companies geologist observed the drilling, described the soil samples, and prepared the test boring logs included in Appendix A.

3.2 Laboratory Testing

Grain size analyses (ASTM D6913) were performed on four representative soil samples from test borings and one upstream sediment grab sample to aid in determining engineering properties. Two unconfined compression tests were performed on representative bedrock core samples.

Laboratory testing was conducted by Geotesting Express, Inc., of Acton, Massachusetts. Results of laboratory testing are provided in Appendix B.

4.0 SUBSURFACE CONDITIONS

4.1 Subsurface Conditions

Subsurface conditions encountered in the explorations consisted of Fill overlying Sand (alluvium) overlying Bedrock A layer of Decomposed Bedrock overlying more intact bedrock was also encountered. Subsurface materials encountered are shown graphically on Figure 3, and data are summarized on Table I.

Generalized subsurface conditions were as follows:

THICKNESS (FT)	GENERALIZED DESCRIPTION
4 to 4.5	Fill – Generally brown, coarse to fine SAND and coarse to fine GRAVEL, trace to little silt. SPT N-Values ranged from 35 to more than 60 blows per foot (bpf, dense to very dense), with refusals.
10.5 to 11.5	Sand (Alluvium) – Generally gray/brown coarse to fine SAND and to little coarse to fine GRAVEL, trace to little silt. A layer of sandy SILT was encountered at about 11 feet below grade in Boring S-2A. SPT N-Values ranged from 22 to 28 bpf (medium dense), with refusals. Inferred cobbles were encountered in the sand at test boring S-2.
5 to 14.5	Decomposed Bedrock – Reddish Brown sandstone that could be roller-bitted through with moderate effort. One SPT value of 77 was measured. Several SPT refusals were noted.

Bedrock - Bedrock encountered was moderately strong, moderately weathered, moderately to extremely fractured, red brown, fine-grained SANDSTONE. Primary joints are low angle, planar, open and weathered. Several vertical joints were noted. Rock Quality Designation (RQD) ranged from 0 to 70 (very poor to fair quality rock).

Results of two laboratory unconfined compression strength tests conducted on bedrock core samples recovered from the borings were 23,166 and 9,761 pounds per square inch.

Groundwater – Although groundwater was not measured in the boreholes during drilling, water levels are expected to be heavily influenced by and about the same elevation as surface water levels in Cherry Brook, but will vary with season, precipitation, temperature, construction activity in the area and other factors.

5.0 GEOTECHNICAL ENGINEERING RECOMMENDATIONS

We recommend that the new bridge structure (abutments, wingwalls and/or pre-cast box units) be supported on spread footing foundations bearing directly on the decomposed bedrock stratum.

Recommendations for both spread footings and micropiles are provided below.

- 5.1 General
- Seismic Design: Soils are not susceptible to liquefaction. Seismic design is not required for simple-span bridges (AASHTO Article 4.7.4.2). Soil conditions at the site are defined as AASHTO Site Class C.
- **Backfill Material:** Place Pervious Structure Backfill (CTDOT Form 818 M.02.05) behind the abutments and abutment wingwalls above a line defined by a 1V:1.5H slope extending up from the heel of the footing to grade.
- Weep Holes: 4-inch-dia. weep holes at max 10 foot spacing, installed according to CTDOT specifications.
- Lateral Earth Pressures: Figure 4 At-Rest Earth Pressures, to be used in design of a 3-sided box culvert or abutment and wingwall retaining walls that are fixed at their tops. Figure 5 Active Earth pressures are appropriate for design if wingwalls are free to rotate at their tops.

Geotechnical Engineering Report Replacement of Bridge 023008 West Road over Cherry Brook Canton, Connecticut September 17, 2021

5.2 Spread Footing Design Criteria

- **Subgrade Preparation:** Design abutment and wingwall foundations to bear directly on a 12-inch-thick layer of crushed stone (Form 818 M.01.01, No. 6) placed over the decomposed bedrock. The crushed stone layer is recommended to provide uniform bearing and to create a dry, stable working platform.
- Bearing Resistance: <u>Service Limit State (Nominal)</u>: 8,000 pounds per square foot (psf); apply Resistance Factor of 1.0 (AASHTO 10.5.5.1) to get the factored bearing resistance; <u>Strength Limit State (Nominal)</u>: 20,000 psf; apply Resistance Factor of 0.55 (AASHTO Table 11.5.7-1) to get the factored bearing resistance.
- Settlement at Recommended Bearing Pressure: Estimated total settlement less than 1 inch; differential less than ³/₄- inch.
- **Coefficient of Friction (tan δ) Along Bottom:** 0.55 (AASHTO Table C3.11.5.3-1); Resistance factor 1.0 (AASHTO Table 11.5.7-1).

5.3 Micropile Design

- **Micropile Design:** Design micropiles as Type A with the following elements:
 - 9-5/8 inch O.D., 0.472-inch thick wall permanent casing that extends to bedrock. Casing should not be relied upon for uplift resistance.
 - A minimum 8.5-inch diameter bonded zone socketed into bedrock. The top of the rock socket should be within sound rock below the decomposed bedrock. Evaluation of the required length of the rock socket should be designed by the Contractor per CTDOT procedures for micropile design.
 - A No. 18 central rebar core that extends the full length of the micropile from the pile head to the bottom of the rock socket.
 - A grout strength of 5,000 pounds per square inch (psi).
- Bearing Resistance:
 - <u>Service Limit State (Nominal)</u>: 100 kips; apply Resistance Factor of 1.0 (AASHTO 10.5.5.1) to get the factored bearing resistance;
 - <u>Strength Limit State (Nominal)</u>: 200 kips; apply Resistance Factor of 0.7 (AASHTO Table 10.5.5.2.5-1) to get the factored bearing resistance.
- Ultimate Axial Compression: We recommend an ultimate axial capacity of 200 kips be provided to the Contractor for purposes of their micropile design and verification test.
- **Spacing:** Minimum 30 inches or 3 times the pile diameter, whichever is greater (AASHTO 10.9.1.2)
- Settlement: Maximum total settlement of micropiles is estimated at less than 1 inch. This settlement will occur as loads are applied.
- **Load Tests:** We recommend that load tests include a minimum of one verification test on a sacrificial pile, and proof tests on five percent of the production piles.
- Lateral Resistance: Lateral pile load analyses will be conducted, if required.
- **Drilling:** Use casing through soil. Anticipate difficult drilling conditions (i.e., cobbles, boulders, hard rock).

6.0 CONSTRUCTION CONSIDERATIONS

6.1 Excavation

Conventional heavy excavation equipment should be suitable for excavation in existing soil materials. Excavation should conform to OSHA excavation regulations contained in 29 CFR Part 1926, latest edition. Bedrock excavation will likely be required, and the Contractor should assume controlled blasting will be required.

6.2 Bearing Surface Preparation

Place crushed stone (Form 818 M.01.01, No. 6) directly over the natural subgrade surface. Compact the crushed stone layer with at least six passes of a large vibratory plate compactor capable of exerting a minimum dynamic force of 2,000 lbs.

6.3 Cofferdam and Dewatering

We expect that excavations for shallow foundations and/or pile caps are likely to penetrate below groundwater, depending on the water level in the brook during construction. Construction should be performed in-the-dry, and cofferdam and dewatering will be required. The footings will bear on decomposed bedrock, so steel sheeting will not likely be feasible. We anticipate that a drilled system such as soldier piles and lagging with the soldier piles drilled into the bedrock will be feasible. The system would need a means to make the lagging water-tight. Other means may also be feasible.

Dewatering from sumps located in the bottom of excavations appears feasible. Surface water should be diverted away from excavations.

6.4 Micropile Installation

Micropiles should be drilled with a permanent casing. Micropile pile drilling equipment must be capable of drilling through the overburden, which is anticipated to contain variable sized cobbles and boulders, and also capable of penetrating through fractured and intact bedrock. Therefore, it should be assumed that drilling activities may be difficult and time consuming if boulders are encountered. Drilling techniques should limit loss of ground. The bonded zone should be entirely with bedrock below any decomposed bedrock.

6.5 Temporary Earth Retaining Systems

Temporary earth retaining systems (TERS) will likely be required in some areas to accommodate the proposed staged excavation. Steel sheeting may be feasible depending on the depth of the excavation and depth to bedrock. Soldier piles and lagging also appears feasible. Soldier piles may need to be drilled into the bedrock. Micropiles and lagging, and other TERS systems may also be considered.

6.6 Preconstruction Survey and Monitoring

Vibrations from demolition, pile installation, cofferdam installation, and bedrock excavation are not expected to affect the structural integrity of nearby structures. However, vibration and noise will likely be noticeable inside nearby buildings. A preconstruction survey of structures within 250 feet should be conducted in advance of construction, and vibration monitoring should be conducted. There appear to be several existing structures within this distance.

6.6 Reuse of Existing Soils

The existing soils to be excavated will consist of existing Fill, sand and decomposed bedrock. These soils are not expected to be readily suitable for reuse as Pervious Structure Backfill or Granular Fill. Excavated soils may be suitable for reuse as embankment fill. However, siltier soils may be difficult to properly compact when wet, and may need to be dried to achieve compaction. Drying the soils can be difficult and at times impractical, particularly during periods of cold and wet weather.

7.0 FUTURE SERVICES AND LIMITATIONS

7.1 Future Services

We recommend that Freeman Companies be engaged during construction to observe:

- Verify that soil conditions exposed in excavations are in general conformance with design assumptions, and that the geotechnical aspects of construction are consistent with the project specifications.
- Review contractor submittals related to micropiles and observe installation in accordance with Form 818.
- Observe preparation of bearing surfaces.

7.2 Limitations

This report was prepared for the exclusive use of WSP and the project design team. The recommendations provided herein are based on the project information provided at the time of this report and may require modification if there are any changes in the nature, design, or location of the bridge.

The recommendations in this report are based in part on the data obtained from the subsurface explorations. The nature and extent of variations between explorations may not become evident until construction. If variations from the anticipated conditions are encountered, it may be necessary to revise the recommendations in this report.

Our professional services for this project have been performed in accordance with generally accepted engineering practices; no warranty, express or implied, is made.

Bridge 023008 West Road over Cherry Brook Canton, Connecticut

Table 1 Subsurface Data

Boring No.	Ground Surface	Depth (ft.)	_	Thickr	ness (ft.)		Ground	water ²	Bedrock	
	El. ¹		Asphalt	Fill	Sand	Decomposed Bedrock	Depth (ft.)	Elevation	Depth (ft.)	Elevation
S-1	444	40.0 (C)	0.3	3.7	11.5	14.5	NM		30.0	414
S-2	444	11.0 (E)	0.3	4.2		NE	NM		NE	NE
S-2A	444	29.5 (C)	0.3	4.2	10.5	5.0	NM		20.0	424

Notes:

1. Ground surface elevations were estimated from topographic plans.

2. Groundwater levels were not measured due to the introduction of water to the drill stem.

3. "NE" - Stratum Not Encountered; "C" - Bedrock cored; "R" - Refusal encountered; "E" Equipment failure

4. Refer to the text of the report for additional information.

FIGURES

THESE DRAWINGS SHALL NOT BE UTILIZED BY ANY PERSON, FIRM OR CORPORATION WITHOUT THE SPECIFIC WRITTEN PERMISSION OF FREEMAN COMPANIES, LLC

njohnson

Plotted By:

Feb 25, 2021-4:21pm

бмр

Rd, Can

West

6560\Figure

C: \Users\n jot

LC.

nies, I

Comp

-ree

SOUTH ELEVATION

ELEVATE YOUR EXPECTATIONS

THESE DRAWINGS SHALL NOT BE UTILIZED BY ANY PERSON, FIRM OR CORPORATION WITHOUT THE SPECIFIC WRITTEN PERMISSION OF FREEMAN COMPANIES, LLC

REVISIONS

 DRAWN: CHECKED: APPROVED:	N.J. C.T. N.W.	SHEET NO.
SCALE: PROJECT NO.: DATE:	1 = 8 2020-0401 2/26/2021	

APPENDIX A

TEST BORING LOGS

Driller:	R	. Posa	Conr	nectic	ut D0	OT Boring R	Hole No.: S-1				
Inspect	or: G	. Jacobson	Town:		Canto	on		Stat./Offset: 4+40	Stat./Offset: 4+40.0/-2.6 (L)		
Engine	ər: N	athan Whetten	Projec	t No.:	2020	-0401		Northing:			
Start Da	ate: 12	2-7-20	Route	No.:	West	Rd		Easting:			
Finish D	Date: 12	2-7-20	Bridge	No.:	0230	08		Surface Elevation: 4	44		
Project	Descripti	on: Replacement o	f Bridg	e 0230	08 ove	er Cherry Broo	k				
Casing	Size/Tvp	e: 4" HW	Sampl	er Tvpe	/Size:	SS 1-3/8		Core Barrel Type: N	X		
Hamme	er Wt.: 30	00lb Fall: 24in.	Hamm	er Wt.:	140lb	Fall: 30in.					
Ground	water Ob	servations: 4 ATD	1					1			
		SAMPLE	S			_					
t)	Ċ					ion				n (fi	
h (f	"No	Blows on	i.	(in.	%	eral a xript	IVIE	aterial Description		atio	
ept	aml	per 6 inches	en.	ec.	D D D	ene esc				leva	
	ς Υ		L 0.	2	2	DÓD				ш	
0-						Pavement	Pavement Structu	ure - Asphalt Pavemen	t		
									-		
	S-1	18 18 17 19	24	14		1 111	Brown c-f SAND,	, some c-f GRAVEL, lit	tle silt		
_									_		
_	S-2	9 8 50/3"	15	10			Brown c-f SAND,	, some c-f GRAVEL, lit	tle silt	-110	
_						Sand				440	
5-	S-3	30 50/1"	7	3			Gray-brown c-f S	AND, little c-f gravel, lit	tle silt		
-									-		
									-		
									_		
_										-435	
10										400	
10-											
	S-4	14 11 10 19	24	8			Gray-brown c-f S	AND and c-f GRAVEL	, little silt –		
									-		
									_		
									_	-430	
15-											
	S-5	60 50/4"	10	8		Decomposed	Gray-brown c-f S	AND, little c-f gravel, lit in tip of split-spoon	tle silt; red		
						Sandstone			_		
									-		
									-		
									_	-425	
20-		50/3"	2	2							
20	<u> </u>	50/5					Red I SAND and	SILT (Decomposed S	andstone)		
									Γ		
-											
-									F		
-									-	-420	
25-											
		Sample Type: S	= Split \$	Spoon	C = 0	Core UP = Ur	ndisturbed Piston	V = Vane Shear Te	est		
		Proportions Used:	Trace	= 1 - 1	0%,	Little = 10 - 20	%, Some = 20 -	35%, And = 35 - 5	0%		
Total P	enetratior	n in	NC	DTES: A	Augers	to 10 ft; drove 4	" casing to 15 ft; rol	ller bit open hole to	Sheet		
Earth: 3	30ft	Rock: 10ft	30	ft. Iler bitte	- d mod	arately hard from	- 15 5 to 30 ft		1 of 2		
No. of		No. of		re barre	el repea	atedly blocked by	/ soft soil-like layers	from 38 to 40 ft.			
Soil Sa	mples: 7	Core Runs: 3							SM-001-M REV	/. 1/02	

Driller:	R	. Posa	Conn	ectic	ut DC	OT Boring R	Hole No.: S-1			
Inspect	or: G	. Jacobson	Town:		Canto	on		Stat./Offset: 4+40.0/-2.6 (L)		
Engine	ər: N	athan Whetten	Project	No.:	2020-	-0401		Northing:		
Start Da	ate: 1	2-7-20	Route N	lo.:	West	Rd		Easting:		
Finish [Date: 12	2-7-20	Bridge N	No.:	02300	08		Surface Elevation: 4	44	
Project	Descripti	on: Replacement o	f Bridge	0230)8 ove	er Cherry Broo	k			
Casing	Size/Typ	e: 4" HW	Sample	r Type/	Size: \$	SS 1-3/8		Core Barrel Type: N	X	
Hamme	er Wt.: 30	00lb Fall: 24in.	Hamme	r Wt.:	140lb	Fall: 30in.				
Ground	water Ob	oservations: 4 ATD								
		SAMPLE	s			_ ס			E	5
(t)	, Ö	Blowe on		-		llize	Ma	terial Description		
th (e/Ne	Sampler	i.	i.	0	nera tta crip		and Notes	/atic	/פוור
Dep	San Typ	per 6 inches	_en	yec	N N N	Ger Stra Des				Ď
25-	0.7	100/5"								
	<u> </u>	100/5	5	5		Decomposed Sandstone	Red f SAND and	SILT (Decomposed S	andstone)	
						(con't)				
_										
-										
-									-41	15
30-						Sandstone			_	
-							Mod strong, mod	weath, aphanitic, red.	_	
							SANDSTONE. C	Granite seam at 32 ft, b	edding	
_	C-1		60	48	28		dip, open, weathe	red. Secondary crack	snallow (s and	
							joints vertical, tigh	t, mod. weathered. C	ore Rate	10
_							(min/it): 2,2,2,3,3		-41	10
35—							Mod. strong, mod	I. weathered, aphanitic	, red,	
-	C-2		36	28	31		indistinct, primary	joints 2-8 in spaced, s	shallow	
-							dipping, open, we	ath. Secondary crack	s and	
							3,3,3			
	C-3		24	11	0		Soft weathered ap Primary joints are	ohanitic red SANDST(1 to 2 in, spaced, with	DNE. ⊔probably ⊢40)5
40-							soil layers (not rec	covered). Core Rate (min/ft): 3,3	
								5 40ft		
_										
-										
-									-40)0
45-									-	
									_	
_										
									-39	15
50-		Sample Type: 9	= Split 9	noon		Core LID-Lin	disturbed Piston	$V = V_{2} P_{2} P_{2}$	∟	
		Proportions Used	Trace =	= 1 _ 1	0%	$1 \text{ ittle} = 10 - 20^\circ$	% Some = 20 -	35% And = $35 - 50$)%	
Total P	anatration		NO0-			to 10 ft drove 4	" casing to 15 ft rol	ler hit open hole to	Shoot	
			30 f	163. <i>F</i> t.	agers	to 1011, utove 4	casing to 13 it, fol	ובו אוג טאפוז זוטופ נט	2 of 2	
Larth: No of	501(No. of	Rolle	er bitte	d mod	erately hard from	1 15.5 to 30 ft	from 38 to 40 ft		
Soil Sa	 o. of No. of Core Runs: 3 No. of Core Runs: 3 									

Driller: A. McKernon Connecticut DOT Boring Report Format									Hole No.: S-2				
Inspecto	or: G	i. Jaco	bson	ı	-	Town:		Canto	on		Stat./Offset: 3+94	.7/-1.5 (L)	
Enginee	er: N	athan	Whe	etten	I	Project	No.:	2020-	-0401		Northing:		
Start Da	ate: 12	2-7-20)		1	Route N	lo.:	West	Rd		Easting:		
Finish D	Date: 12	2-7-20)		I	Bridge N	lo.:	0230	80		Surface Elevation: 4	44	
Project	Descripti	on: R	epla	ceme	nt of	Bridge	0230	08 ove	er Cherry Brool	k			
Casing	Size/Typ	e: 4" ⊦	łW		3	Sample	r Type/	Size:	SS 1-3/8	Core Barrel Type: N	Х		
Hamme	er Wt.: 30	00lb	Fall:	24in.	. 1	Hamme	r Wt.:	140lb	Fall: 30in.				
Ground	water Ob	servati	ons:	4 A	TD								
		1		SAM	PLES								(H
(H	n <u>o</u>		Blov	vs on		- -	- -		alize	Ma	aterial Description) no
oth	nple e/N		San	npler		(i) .		D	nera ata scrip		and Notes		vati
Dep	Sar Typ	p	ber 6	inche	es	Per	Rec	RO	Gei Stra Des				Εle
0-									Dovomont	Devices and Otmust			
									Structure	Pavement Struct	ure - Asphait Pavemer	n –	
	S_1	16	18	20	1/	24	11		Fill	Brown of CDAV/	L and a f SAND trac	a ailt	
	0-1		10	20	14	27	'-			BIOWII C-I GRAVI	EL and C-I SAND, trac		
	S-2	20	28	24	16	24	3			Brown c-f SAND	and c-f GRAVEL, little	silt	-440
5-									Sand				
-	S-3	4	7	21	36	24	8			Brown to dark bro roots	own fine SAND and S	LT, trace	
-												_	
_												_	
												_	-435
10-										No recovery below	w 6 ft. Roller bitted se	veral	
										cobbles from 6 to	9 11 ft		
											2 4 4 8		
										END OF BORING	5 1 110	-	
-												-	
-												_	-430
15—												_	
_												_	
												_	
													-125
													720
20													
												—	
-												-	
-												_	
_	- 420												
25	25												
	Sample Type: S = Split Spoon C = Core UP = Undisturbed Piston V = Vane Shear Test												
	Proportions Used: Trace = 1 - 10%, Little = 10 - 20%, Some = 20 - 35%, And = 35 - 50%												
Total Pe	enetratior	ו in				NOT	ES: A	ugers	to 10 ft; drove 4	" casing to 11 ft; br	oke off bottom 5 ft of	Sheet	
Earth: 2	11ft	Rock:	Oft				iy, aba	anuon	noie, move ∠ π V	vesi 10 3-2A			
No. of Soil Sar	nples: 4	No Co	o. of ore Ri	uns: ()							SM-001-M REV	/. 1/02

Driller:	А	. McKe	ernor	า		Connecticut DOT Boring Report Format Hole No.: S-2						4	
Inspect	or: G	i. Jaco	bson	1		Town:		Canto	on		Stat./Offset: 3+92.7/-1.5 (L)		
Engine	ər: N	athan	Whe	etten		Project	No.:	2020-	-0401		Northing:		
Start Da	ate: 12	2-7-20)			Route I	No.:	West	Rd		Easting:		
Finish [Date: 12	2-7-20)			Bridge	No.:	0230	80		Surface Elevation:	444	
Project	Descripti	on: R	epla	ceme	nt of	Bridge	0230	08 ove	er Cherry Broo	k			
Casing	Size/Type	e: 4" ⊦	IW			Sample	r Type	/Size:	SS 1-3/8		Core Barrel Type:	١X	
Hamme	er Wt.: 30)0lb	Fall:	24in.		Hamme	er Wt.:						
Ground	water Ob	servati	ons:	4 A	TD								
				SAMF	PLES	3			- - -				f)
(tt)	, Ö		Blov			-	-		llize	Ma	aterial Description		i) uc
oth (e/Ne		San	npler		i.	i.		nera ata scrip		and Notes		vatio
Dep	San Typ	p	er 6	inche	s	Pen	Rec	N N	Ger Stra Des				Ше
							-						-
_									Structure	Pavement Struct	ure - Asphalt Paveme	ent	
	0.4	10	4.0	00		0.4			Fill				
	5-1	10	18	20	14	24	14			Brown c-f SAND	and c-f GRAVEL, litt	e silt	
-													-
-	S-2	20	28	24	16	24	3			Brown c-f SAND	and c-f GRAVEL, litt	e silt	-440
5-									Sand				-
-	S-3	4	7	21	36	24	8			Brown to dark bro	own fine SAND and S	SILT, trace	-
-										10013			-
_													
_													_135
10													-00
10-	.									10 - 11 ft [.] Brown	C-FSAND some c-f	nraval littla	
-	S-4	18	12	12	16	24	14			silt; 11 - 12 ft: R	ed brown SILT and f	ne SAND.	-
-													-
-													-
-													-430
15—									Decomposed				-
_	S-5	46	30	47	47	24	12		Sandstone	Red brown fine S	SAND and SILT		_
_													
_													-425
20-	<u> </u>	30/0"				0	0		Sandstone				-
										Mod strong mod	weath fine arained	red brown	-
-	.						-			SANDSTONE. E	Bedding indistinct, pri	mary joints	-
	C-1					60	54	70		3-16 in spaced, s Secondary joints	hallow dip, open, we vertical tight slightly	athered. weathered	_
_	Core Rate (min/ft): 1, 1, 1, 1, 1.25												
25-													
2.5-		Sam	ple T	ype:	S =	Split S	poon	C = (Core UP = Ur	disturbed Piston	V = Vane Shear	Test	
		Propo	ortion	is Use	ed:	Trace	= 1 - 1	0%,	Little = 10 - 20	%, Some = 20 -	35%, And = 35 -	50%	
Total P	enetratior	n in				NO	TES: N	Noved	over from S-2 (a	bandoned); started	I sampling at 10 ft;	Shee	et
Earth:	20ft	Rock:	10ft			drov	/e 4" ca	asing to	o 15 ft; roller bit o	open hole to 30 ft.	rately hard 15 to 20	1 of	2
No. of		No	o. of			ft.		u casil			allery natu 10 to 20		
Soil Sa	mples: 2	Co	ore R	uns: 2	2							SM-001-M R	EV. 1/02

Driller:	А	. McKernon	Conn	ectic	ut DC	OT Boring R	Report Format	Hole No.: S-2	4	
Inspect	or: G	. Jacobson	Town:		Canto	on		Stat./Offset: 3+9	2.7/-1.5 (L)	
Engine	er: N	athan Whetten	Project	No.:	2020-	-0401		Northing:		
Start Da	ate: 12	2-7-20	Route N	lo.:	West	Rd		Easting:		
Finish D	Date: 12	2-7-20	Bridge I	No.:	02300	08		Surface Elevation:	444	
Project	Descripti	on: Replacement c	of Bridge	0230)8 ove	er Cherry Broo	k			
Casing	Size/Typ	e: 4" HW	Sample	r Type/	Size: S	SS 1-3/8		Core Barrel Type: I	٨X	
Hamme	er Wt.: 30	00lb Fall: 24in.	Hamme	r Wt.:	140lb	Fall: 30in.				
Ground	water Ob	servations: 4 ATD				1	1			
		SAMPLE	S	1						(H)
(ft)	a <u>o</u>	Blows on	í.	- -		alize	Ma	aterial Description) uo
oth	nple e/N	Sampler	i) .		D	ata scrip		and Notes		vati
Dep	Sar Typ	per 6 inches	Per	Rec	RO	Des Stra				Ше
25-						Sandatana				+
						(con't)		weath anh anitic re-	J	
							SANDSTONE so	ft below 28 ft, beddir	a, ng indistinct,	
	C-2		54	54	50		primary joints 1-3	in spaced, shallow of Rate (min/ft): 1.25	lip, open, 1 25 1 25	
							1.25, 1.25	1.20,	1.20, 1.20,	Γ
										-415
30-							END OF BORING	G 29.5ft		-
-										-
_										-
_										-
_										-410
35_										
55										
										F
_										-
-										+
-										-405
40-										-
										L
										-400
45										-
-										-
_										-
_										L
										-395
50-										
50-		Sample Type: S	= Split S	poon	C = 0	Core UP = Ur	ndisturbed Piston	V = Vane Shear	Fest	_
		Proportions Used:	Trace =	= 1 - 1	0%,	Little = 10 - 20	%, Some = 20 -	35%, And = 35 -	50%	
Total Pe	enetratior	n in	NO	TES: N	loved	over from S-2 (a	abandoned); started	sampling at 10 ft;	She	et
Earth: 2	20ft	Rock: 10ft	drov	/e 4" ca	asing to	o 15 ft; roller bit	open hole to 30 ft.	rately hard $1E$ to 20	2 of	2
No. of		No. of	Roll ft.		u easil	y 110111 10 to 151	n, roller billed mode	rately naru 15 to 20		
Soil Sar	mples: 2	Core Runs: 2							SM-001-M F	REV. 1/02

RESULTS OF LABORATORY TESTING

APPENDIX B

	Client:	Freeman C	ompanies,	LLC	,			
	Project:	West Rd ov	er Cherry	Bro	ok			
0	Location:	Canton, C1	-				Project No:	GTX-312901
9	Boring ID:				Sample Type:	bag	Tested By:	ckg
	Sample ID:	Grab-1			Test Date:	12/22/20	Checked By:	bfs
	Depth :	U/S			Test Id:	605799		
	Test Comm	ent:						
	Visual Desc	ription:	Moist, darl	< oli	ive brown grave	el with sand	ł	
	Sample Cor	mment:						
_		~					(

Sample/Test Description Sand/Gravel Particle Shape : ANGULAR Sand/Gravel Hardness : HARD

0.11

0.075

3

2.7

#140

#200

Client:	Freeman C	Companies, LLC	;			
Project:	West Rd of	ver Cherry Bro	ok			
Location:	Canton, C	Г			Project No:	GTX-312901
Boring ID:	S-1		Sample Type:	bag	Tested By:	ckg
 Sample ID:	: S-1		Test Date:	12/21/20	Checked By:	bfs
Depth :	1-3		Test Id:	605795		
Test Comm	ient:					
Visual Desc	cription:	Moist, brown	sand with silt a	nd gravel		
Sample Co	mment:					

AASHTO Stone Fragments, Gravel and Sand (A-1-b (0))

Sample/Test Description Sand/Gravel Particle Shape : ANGULAR Sand/Gravel Hardness : HARD

0.42

0.25

0.15

0.11

0.075

28

20

15

13

11

#40

#60

#100

#140

#200

	Sample Cor	mment:						
	Visual Desc	ription:	Moist, dar	k gr	ayish brown cla	ayey sand v	vith gravel	
	Test Comm	ent:						
	Depth :	10-12			Test Id:	605796		
	Sample ID:	S-4			Test Date:	12/21/20	Checked By:	bfs
3	Boring ID:	S-1			Sample Type:	bag	Tested By:	ckg
	Location:	Canton, CT	-				Project No:	GTX-312901
	Project:	West Rd ov	ver Cherry	Broo	ok			
	Client:	Freeman C	ompanies,	LLC				

1.5 in 37.50 100 1 in 25.00 91 0.75 in 19.00 85 0.5 in 12.50 72 0.375 in 9.50 69 #4 4.75 62 #10 2.00 54 #20 0.85 47 #40 0.42 39 #60 0.25 32 #100 0.15 24 #140 0.11 20 #200 0.075 18				-	-
1.5 in 37.50 100 1 in 25.00 91 0.75 in 19.00 85 0.5 in 12.50 72 0.375 in 9.50 69 #4 4.75 62 #10 2.00 54 #20 0.85 47 #40 0.42 39 #60 0.25 32 #100 0.15 24 #140 0.11 20 #200 0.075 18					
1 in 25.00 91 0.75 in 19.00 85 0.5 in 12.50 72 0.375 in 9.50 69 #4 4.75 62 #10 2.00 54 #20 0.85 47 #40 0.42 39 #60 0.25 32 #100 0.15 24 #140 0.11 20 #200 0.075 18	1.5 in	37.50	100		
0.75 in 19.00 85 0.5 in 12.50 72 0.375 in 9.50 69 #4 4.75 62 #10 2.00 54 #20 0.85 47 #40 0.42 39 #60 0.25 32 #100 0.15 24 #140 0.11 20 #200 0.075 18	1 in	25.00	91		
0.5 in 12.50 72 0.375 in 9.50 69 #4 4.75 62 #10 2.00 54 #20 0.85 47 #40 0.42 39 #60 0.25 32 #100 0.15 24 #140 0.11 20 #200 0.075 18	0.75 in	19.00	85		
0.375 in 9.50 69 #4 4.75 62 #10 2.00 54 #20 0.85 47 #40 0.42 39 #60 0.25 32 #100 0.15 24 #140 0.11 20 #200 0.075 18	0.5 in	12.50	72		
#4 4.75 62 #10 2.00 54 #20 0.85 47 #40 0.42 39 #60 0.25 32 #100 0.15 24 #140 0.11 20 #200 0.075 18	0.375 in	9.50	69		
#10 2.00 54 #20 0.85 47 #40 0.42 39 #60 0.25 32 #100 0.15 24 #140 0.11 20 #200 0.075 18	#4	4.75	62		
#20 0.85 47 #40 0.42 39 #60 0.25 32 #100 0.15 24 #140 0.11 20 #200 0.075 18	#10	2.00	54		
#40 0.42 39 #60 0.25 32 #100 0.15 24 #140 0.11 20 #200 0.075 18	#20	0.85	47		
#60 0.25 32 #100 0.15 24 #140 0.11 20 #200 0.075 18	#40	0.42	39		
#100 0.15 24 #140 0.11 20 #200 0.075 18	#60	0.25	32		
#140 0.11 20 #200 0.075 18	#100	0.15	24		
#200 0.075 18	#140	0.11	20		
	#200	0.075	18		

_			
	Coeffic	ients	
	D ₈₅ = 18.7162 mm	$D_{30} = 0.2252 \text{ mm}$	
	D ₆₀ =3.8035 mm	$D_{15} = N/A$	
	$D_{50} = 1.1885 \text{ mm}$	$D_{10} = N/A$	
	$C_{II} = N/A$	$C_c = N/A$	

ASTM	Classification N/A		
<u>AASHTO</u>	Stone Fragments, Gravel and Sand (A-1-b (0))		
Sample/Test Description			

Sand/Gravel Particle Shape : ANGULAR Sand/Gravel Hardness : HARD

Client:	Freeman Companies, LLC							
Project:	West Rd ov	ver Cherry Broo	ok					
Location:	Canton, CT	Г			Project No:	GTX-312901		
Boring ID:	S-2		Sample Type:	bag	Tested By:	ckg		
Sample ID:	S-1		Test Date:	12/21/20	Checked By:	bfs		
Depth :	1-3		Test Id:	605797				
Test Comm	ent:							
Visual Desc	ription:	Moist, brown	gravel with silt	and sand				
Sample Cor	mment:							

1.5 in	37.50	100	
1 in	25.00	64	
0.75 in	19.00	52	
0.5 in	12.50	49	
0.375 in	9.50	47	
#4	4.75	42	
#10	2.00	33	
#20	0.85	24	
#40	0.42	17	
#60	0.25	12	
#100	0.15	9	
#140	0.11	8	
#200	0.075	7.0	

_		
	Coeffic	cients
	D ₈₅ =31.6184 mm	$D_{30} = 1.4869 \text{ mm}$
	D ₆₀ =22.6048 mm	$D_{15} = 0.3422 \text{ mm}$
	D ₅₀ = 14.1227 mm	$D_{10} = 0.1637 \text{ mm}$
	C _u =138.087	C _c =0.597

	Sample /Test Description
<u>AASHTO</u>	Stone Fragments, Gravel and Sand (A-1-a (1))
<u>ASTM</u>	Classification N/A

Client:	Freeman C	Companies, LLC				
Project:	West Rd of	ver Cherry Broo	ok			
Location:	Canton, C	Т			Project No:	GTX-312901
Boring ID:	S-2		Sample Type:	bag	Tested By:	ckg
Sample ID:	S-4		Test Date:	12/21/20	Checked By:	bfs
Depth :	10-12		Test Id:	605798		
Test Comm	ent:					
Visual Desc	cription:	Moist, brown s	sand with silt a	nd gravel		
Sample Co	mment:					

Client:	Freeman Companies, LLC							
Project:	West Rd over Cherry Brook							
Location:	Canton, CT			Project No:	GTX-312901			
Boring ID:		Sample Type:		Tested By:	tlm			
Sample ID:	:	Test Date:	12/28/20	Checked By:	smd			
Depth :		Test Id:	605801					

Bulk Density and Compressive Strength of Rock Core Specimens by ASTM D7012 Method C

Boring ID	Sample Number	Depth	Bulk Density, pcf	Compressive strength, psi	Failure Type	Meets ASTM D4543	Note(s)
S-1	C-2	35.53-35.91 ft	161	23166	1	No	2,*
S-2	C-1	20.09-20.49 ft	152	9761	1	Yes	

Notes: Density determined on core samples by measuring dimensions and weight and then calculating.

All specimens tested at the approximate as-received moisture content and at standard laboratory temperature.

The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

Failure Type: 1 = Intact Material Failure; 2 = Discontinuity Failure; 3 = Intact Material and Discontinuity Failure (See attached photographs)

- 1: Best effort end preparation. See Tolerance report for details.
- 2: The as-received core did not meet the ASTM side straightness tolerance due to irregularities in the sample as cored. 3: Specimen L/D < 2.
- 4: The as-received core did not meet the ASTM minimum diameter tolerance of 1.875 inches.
- 5: Specimen diameter is less than 10 times maximum particle size.
- 6: Specimen diameter is less than 6 times maximum particle size.

*Because the indicated tested specimens did not meet the ASTM D4543 standard tolerances, the results reported here may differ from those for a test specimen within tolerances.

	SPECIMENS BY ASTM D4543	re S1)	core and reference surface plate: Aakimum gap ≤ 0.02 ln.? NO	Maximum difference must be < 0.020 in. Straightness Tolerance Met? NO	0.375 0.500 0.625 0.750 0.875 -0.00020 -0.00030 -0.00040 -0.00050 0.00000 0.00000 0.00000 0.00000 Difference between max and min readings, in:	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DIAMETER 1	End 1: Stope of Best Fit Line: 0.00040 Angle of Best Fit Line: 0.02308 End 2: Stope of Best Fit Line: 0.00036 Angle of Best Fit Line: 0.00036 Angular Difference: 0.00229 Maximum Angular Difference: 0.00229 Parallelism Tolerance Met? YES Spherically Seated	DIAMETER 2 End 1: Stope of Best Fit Line: 0.00005 Angle of Best Fit Line: 0.00062 End 2: Stope of Best Fit Line: 0.00098 Angle of Best Fit Line: 0.00098 Maximum Angular Difference: 0.00164 Parallelism Tolerance Met? YES Spherically Seated	Maximum angle of departure must be \leq 0.25° Perpendicularity Tolerance Met?	
12/28/2020 : cmh by: smd	ANCES OF ROCK CORE	ON FROM STRAIGHTNESS (Procedu	Maximum gap between side of Is the n		0 0.125 0.250 00 0.00000 -0.00020 00 0.00000 0.00000	0 0.125 0.250 00 0.00000 -0.00010 00 0.00000 0.00000	y = 0.00005x - 0.00001	0.25 0.50 0.75 1.00	y = -0.00002X - 0.00002 0 0.75 1.00	folerance Met?	
Test Date Tested by Checked B	DNAL AND SHAPE TOLER	DEVIATIO	rage 32 97	Y ES Y ES	-0.250 -0.125 0.00 0.00010 0.00000 0.000 0.00010 0.00010 0.000	-0.250 -0.125 0.00 0.0020 0.00010 0.000 0.00000 0.00000 0.000	End 1 Diameter 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	End 2 Diameter 2 0100 0000 0100 -1.00 -0.75 -0.50 -0.25 0.000 Diameter,	bove) Angle [°] Perpendicularity ¹ 0.020 YES 0.006 YES	0.020 YES 0.003 YES
Freeman Companies, LLC West Rd voer Cherry Brook Canton, CT 312901 S-1 C-2 35.53.35 91 ft See photographs	ATION AND DIMENSIC		2 Ave 4.32 1.97 1	m Diameter Tolerence Met? to Diameter Ratio Tolerance Met?	25 -0.500 -0.375 010 0.00010 0.00010 010 -0.00010 0.00010	25 -0.500 -0.375 020 0.00020 0.00020 000 0.00000 0.00000	.00040x - 0.00008	0.002 0.0020	0000036X +0.00003 0.75 1.00 Dial Gage Reading, in 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	thess and Parallelism measurements and Parallelism measurements (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	1.970 0.00036 1.970 0.00005
Client: Project Name: Project Location: GTX #: Boring ID: Septh: Depth: Visual Description:	IIT WEIGHT DETERMIN		1 4.32 1.97	558.75 161 Minimu 2.2 Length	LI SM (Procedure FP1) -0.875 -0.750 -0.6 0.00020 0.00020 0.000 -0.00010 -0.00010 -0.00	-0.875 -0.750 -0.6 0.00030 0.00030 0.00 -0.00010 0.00000 0.00	End 1 Diameter 1 y = -0	-0.50 -0.25 0.50 Diameter, in	End 2 Diameter 1 9 = -0. 5 -0.50 -0.25 0.00 0.25 0.50 Diameter, in	ure P1) (Calculated from End Fiz Difference, Maximum and Minimurr 0.00020 0.00020	0.00070 0.00010
Geolesti Express	UN	BULK DENSITY	Specimen Length, in: Specimen Diameter, in:	Specimen Mass, g: Bulk Density, Ib/ft ³ Length to Diameter Ratio:	END FLATNESS AND PARALLE END 1 Diameter 1, in Diameter 2, in (rotated 90°)	END 2 Diameter 1, in Diameter 2, in (rotated 90')		0.00200 0.00100 0.00100 0.00100 0.00100 -0.00200 -1.00 -1.00 -1.00	Dial Gage Reading, in 0.00200 0.00200 0.00200 0.00200 1.00200 0.002000 0.002000 0.0020000000000	PERPENDI CULARI TY (Proced END 1 Diameter 1, in Diameter 2, in (rotated 90°)	END 2 Diameter 1, in Diameter 2, in (rotated 90°)

Client:	Freeman Companies, LLC
Project Name:	West Rd over Cherry Brook
Project Location:	Canton, CT
GTX #:	312901
Test Date:	12/28/2020
Tested By:	cmh
Checked By:	smd
Boring ID:	S-1
Sample ID:	C-2
Depth, ft:	35.53-35.91

After cutting and grinding

After break

	Client: Project Name: Proiect Locatior		Freeman Compar Nest Rd over Chi Canton. CT	iies, LLC erry Brook			est Date: ested By: checked By:	12/28/2020 cmh smd						
Geolesting	GTX #: Boring ID: Completio:		312901 5-2											
	Sample ID: Depth: Visual Descripti	:uo	2-1 20.09-20.49 fi See photographs											
UNIT WE	IGHT DETEI	RMINATIC	N AND D	IMENSION	NAL AND	SHAPE TO	DLERANC	ES OF RO	CK CORI	SPECIME	INS BY AS	TM D4543	3	
BULK DENSI TY							DEVIATION FR	OM STRAIGHTN	IESS (Procedu	re S1)				
Specimen Length, in:	1 4.45	4.4	Ω	Avera 4.4	ge 5			Maximum gap t	between side of	core and referen	ce surface plate:			
Specimen Diameter, in: Specimen Mass or	1.98 547 25	1.9	8	1.98				-	Is the r	aximum gap <u><</u> C	1.02 in.?	YES		
Bulk Density, Ib/ft ³ Length to Diameter Ratio:	152 2.2	Minimum Diar Length to Dian	eter Tolerence ieter Ratio Tole	Met? srance Met?	YES YES					Maximum differe S	ence must be < (traightness To	0.020 in. Jerance Met?	YES	
END FLATNESS AND PARALLELI SM (Pro	cedure FP1)													
END 1 -0.875 Diameter 1, in 0.00000	-0.750 0.00000	-0.625 0.00000	-0.500 0.00000	-0.375 0.00000	-0.250 0.00000	-0.125 0.00000	0.00000	0.125 0.00000	0.250	0.375 0.00000	0.500 -0.00010	0.625 -0.00010	0.750 -0.00020	0.875 -0.00030
Diameter 2, in (rotated 90°) -0.00030	-0.00030	-0.00020	-0.00010	-0.00010	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000 Difference betw	0.00000 een max and mir 0.00030	0.00000 n readings, in: 90° =	0.00000	0.00000
END 2 -0.875 Dismotor 1 in 0.00000	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875
Diameter 1, in Diameter 2, in (rotated 90°) -0.00010	-0.00010	-0.00010	-0.00010	-0.00010	0.00000	0.00000	0.00000	0.00000.0	0.00000	-0.00000 0.000000 Difference hoth	0.00000 0.00000	0.00000 0.00000	0.00010	0.00020
										Difference betw 0° = Maximum differe	en max and mir 0.0003 ence must be < (Flatness To	ר readings, וה: 90° = 0.0020 in. D lerance Met?	0.0003 Difference = <u>+</u> YES	0.00015
End 1	Diameter 1	y = -0.00012x	- 0.00005			End 1 Dian	neter 2	y = 0.00016x	- 0.00007	DIAMETER 1				
0.00200		_		0.00200						End 1:	Slope of Best Fit	Line	0.00012	
i ,enib				.0.00100							Angle of Best Fit	Line:	0.00688	
0.00000 0.00000 0.00100				0.0000 0.00000 0.00000						End 2:	Slope of Best Fit Angle of Best Fit	Line: Line:	0.00018 0.01015	
ial Ga				0.00200						Maximum Angul	ar Difference:		0.00327	
	0.25 0.00 0.25 Diameter, in	0.50 0.75	1.00	3	1.00 -0.75	-0.50 -0.25 Dia	0.00 0.25 ameter, in	0.50 0.75	1.00		Parallelism To Soberically Seate	llerance Met? ed	YES	
End	2 Diameter 1	y = -0.00018x	- 0.00009			End 2 Dia	imeter 2	y = 0.00013x	- 0.00001	DIAMETER 2				
0.00100 http://www.action.com/action/				ni ,eni 0.002 0.002	0, 8					End 1:	Slope of Best Fit Angle of Best Fit	Line: Line:	0.00016 0.00917	
0.000000000000000000000000000000000000				0.000 0.000					•	End 2:	Slope of Best Fit Anale of Best Fit	Line:	0.00013 0.00737	
-0.00100 -0.00200				01al Ga						Maximum Angul	ar Difference:		0.00180	
-1.00 -0.75 -0.50	-0.25 0.00 0.24 Diameter, in	5 0.50 0.75	1.00	1	-1.00 -0.75	-0.50 -0.25 D	0.00 0.25 liameter, in	0.50 0.75	1.00		Parallelism To Spherically Seat	lerance Met? ed	YES	
PERPENDICULARITY (Procedure P1) END 1 Differen Diameter 1, in Diameter 2, in (rotated 90°)	(Calculated fron nce, Maximum and 0.00030 0.00030	m End Flatness al Minimum (in.)	nd Parallelism me Diameter (in.) 1.980 1.980	easurements abo Slope 0.00015 0.00015	ove) Angle° 0.009 0.009	Perpend YE	icularity Tolerar S S	nce Met?		Maximum angle Perp	of departure mu endicularity To	ist be <u><</u> 0.25° Ierance Met?	YES	
END 2														
Diameter 1, in Diameter 2, in (rotated 90°)	0.00030		1.980 1.980	0.00015 0.00015	0.009	ΥE ΥΕ	ន ន							

Client:	Freeman Companies, LLC
Project Name:	West Rd over Cherry Brook
Project Location:	Canton, CT
GTX #:	312901
Test Date:	12/28/2020
Tested By:	cmh
Checked By:	smd
Boring ID:	S-2
Sample ID:	C-1
Depth, ft:	20.09-20.49

After cutting and grinding

After break